Structure of the 4:1 Complexes Formed by Pyridine and the Group III Halides InCl_{3} and TICl_{3} : mer-Trichlorotris(pyridine)indium(III)-pyridine (1/1), $\left[\mathrm{InCl}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right] \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, and $\boldsymbol{m e r}$-Trichlorotris(pyridine)thallium(III)-pyridine (1/1), $\left[\mathrm{TICl}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right] . \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$

By S. E. Jeffs, R. W. H. Small and I. J. Worrall
Department of Chemistry, The University, Lancaster, England

(Received 24 February 1984; accepted 16 April 1984)

Abstract

InCl}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right] \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}: \quad M_{r}=537 \cdot 4\), orthorhombic, $C 222_{1}, \quad a=9.117$ (7), $\quad b=16.83$ (2), $c=14.66$ (1) $\AA, \quad V=2250(5) \AA^{3}, Z=4, D_{m}=1.59$, $D_{x}=1.586 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.7106 \AA, \quad \mu=$ $1 \cdot 30 \mathrm{~mm}^{-1}, F(000)=1072$, room temperature, $R=$ 0.050 for 1260 measured intensities. [$\left.\mathrm{TlCl}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\right]$]. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}: \quad M_{r}=627 \cdot 0$, orthorhombic, $\quad C 222_{1}, \quad a=$ 9.040 (7), $\quad b=16.88$ (2), $\quad c=14.75$ (1) $\AA, \quad V=$ 2250 (7) $\AA^{3}, Z=4, D_{m}=1.94, D_{x}=1.851 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.7106 \AA, \mu=7.23 \mathrm{~mm}^{-1}, F(000)=1200$, room temperature, $R=0.061$ for 1379 measured intensities. The crystal structures are isomorphous and consist of 'octahedral' $M \mathrm{Cl}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}$ molecules with mer geometry and an additional pyridine molecule of crystallization. The molecules have C_{2} symmetry. The bond distances and angles in the pyridine rings are normal as are the coordination bond lengths. There is angular distortion of the complex due to repulsion by the Cl atom trans to one of the coordinated pyridines.

Introduction. There are only a few examples of indium and thallium trihalide complexes with stoichiometry $M X_{3} .4 L$ (L is a monodentate ligand). $\mathrm{InBr}_{3} .4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ consists of 'octahedral' $\mathrm{InBr}_{3} .3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ molecules with one uncoordinated pyridine (Small \& Worrall, 1982) and the compounds $\mathrm{Tl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(X=\mathrm{Cl}, \mathrm{Br})$ consist of trigonal bipyramidal $\mathrm{Tl} X_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with two lattice water molecules (Glaser, 1979). We here report the structures of two new complexes prepared by us, $\mathrm{InCl}_{3} \cdot 4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ and $\mathrm{TlCl}_{3} .4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$.

Experimental. $\mathrm{TlCl}_{3} \cdot 4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ prepared by adding excess dry pyridine to solution of $\mathrm{Tl}^{\text {III }}$ chloride in acetonitrile. Suitable crystals obtained by recrystallizing from pyridine. $\mathrm{InCl}_{3} .4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ prepared by dissolving $\mathrm{In}^{\text {III }}$ chloride in dry pyridine. The solution was concentrated and suitable crystals slowly formed. In both cases crystals transferred to Lindemann tubes in nitrogen-filled dry box. Crystal data obtained from Weissenberg photographs with $\mathrm{Cu} K \alpha$ radiation (λ $=1.542 \AA) ; D_{m}$ measured by flotation in benzene/methylene dibromide solutions. Intensity measurements made on Stoe STADI-2 two-circle
automatic diffractometer, graphite-monochromated Mo $K \alpha$ radiation; layers $k=0-16$ In ($0-14 \mathrm{Tl}$) measured; $2 \theta<50^{\circ}$; crystal size $0.33 \times 0.33 \times$ $0.11 \mathrm{~mm}(0.19 \times 0.09 \times 0.19 \mathrm{~mm})$. Absorption corrections (max. and min.) $0.75,0.48(0.31,0.16)$ and scaling of data carried out with SHELX 76 (Sheldrick, 1976). 1629 (1388) reflections measured; elimination of those with $I<3 \sigma(I)$ gave 1260 (1379) unique reflections. Standards measured every 10 reflections: variation 1%. Same programs used for all other calculations. In and Tl atom positions, obtained from Patterson maps, used to phase ($F_{o}-F_{c}$) maps to give positions of remaining atoms (apart from hydrogen). Unit weights, full-matrix least-squares refinement (on F) of all atomic positions, anisotropic $U_{i j}$ values for $\operatorname{In}(\mathrm{Tl})$ and Cl , isotropic U values for remaining non- H atoms, convergence at $R=0.050(0.061)$. In each case the enantiomorph was also refined and increased R slightly. In Tables 1 and 2 it can be seen that enantiomorphs of opposite hands were used. Max. $\Delta / \sigma 0 \cdot 164$ (0.150); max. in final difference Fourier map $1.01 \mathrm{e}_{\AA^{-3}}$ ($3.08 \mathrm{e} \AA^{-3}$, associated mainly with Tl). No correction for secondary extinction. Atomic scattering factors those of Cromer \& Mann (1968) and Cromer \& Liberman (1970).

Discussion. Final coordinates and equivalent isotropic thermal parameters (U_{eq}) for In, Tl and Br , and isotropic thermal parameters for C and N are given in Tables 1 and 2.* The crystal structures are isomorphous and consist of 'octahedral' neutral molecules $M \mathrm{Cl}_{3} .3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ with mer (trans) geometry and additional pyridine molecules of crystallization (Figs. 1 and 2) and are similar to the InBr_{3} analogue (Small \& Worrall, 1982). The molecules have twofold symmetry $\left(C_{2}\right)$ with $\mathrm{Cl}(1), M, \mathrm{~N}(1)$ and $\mathrm{C}(1)$ occupying special positions on the twofold (rotation) axis. The interplane angle of the

[^0]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$, equivalent isotropic thermal parameters for indium and chlorine and isotropic thermal parameters for carbon and nitrogen $\left(\AA^{2} \times 10^{4}\right)$

$U_{\text {eq }}=\frac{1}{3} \sum_{t} \sum_{j} U_{i j} a_{i} a_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
In	0^{*}	8353 (1)	7500*	289 (15)
$\mathrm{Cl}(1)$	0^{*}	9822 (5)	7500*	442 (30)
$\mathrm{Cl}(2)$	2714 (3)	8303 (2)	7536 (5)	436 (22)
N(1)	0^{*}	6941 (12)	7500*	266 (29)
$\mathrm{N}(2)$	110 (17)	8295 (5)	5933 (5)	321 (21)
N(3)	5857 (34)	0^{*}	0^{*}	1257 (106)
C(1)	0*	5313 (14)	7500*	437 (47)
C(2)	8699 (19)	5716 (10)	7733 (11)	650 (50)
C(3)	8761 (15)	6525 (9)	7713 (8)	496 (37)
C(4)	980 (18)	8784 (10)	5493 (10)	502 (39)
C(5)	1066 (20)	8810 (11)	4503 (11)	594 (45)
C(6)	232 (17)	8286 (9)	4034 (8)	484 (37)
C(7)	9267 (21)	7747 (12)	4475 (12)	638 (49)
C(8)	9235 (17)	7786 (10)	5473 (10)	464 (36)
C(9)	2833 (39)	0^{*}	0^{*}	1070 (109)
C (10)	3542 (31)	9380 (17)	9542 (19)	1190 (94)
C(11)	5203 (34)	9418 (12)	9581 (14)	960 (71)
* Constrained.				

Table 2. Fractional atomic coordinates $\left(\times 10^{4}\right)$, equivalent isotropic thermal parameters for thallium and chlorine and isotropic thermal parameters for carbon and nitrogen $\left(\AA^{2} \times 10^{4}\right)$

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i} a_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
TI	0^{*}	1627 (1)	2500*	333 (5)
$\mathrm{Cl}(1)$	0^{*}	134 (4)	2500*	467 (30)
$\mathrm{Cl}(2)$	7240 (4)	1701 (4)	2476 (7)	560 (28)
$\mathrm{N}(1)$	0^{*}	3097 (9)	2500*	180 (27)
N(2)	-137 (23)	1696 (8)	4109 (8)	325 (31)
N(3)	-5826 (60)	0^{*}	0^{*}	981 (157)
C(1)	0^{*}	4682 (19)	2500*	645 (77)
C(2)	1249 (34)	4300 (19)	2269 (20)	807 (95)
C(3)	1232 (28)	3493 (16)	2303 (18)	666 (74)
C(4)	-964 (28)	1244 (15)	4539 (16)	528 (57)
C(5)	-1041 (34)	1192 (18)	5501 (19)	701 (74)
C(6)	-223 (34)	1718 (14)	5962 (15)	587 (64)
$\mathrm{C}(7)$	679 (32)	2241 (18)	5529 (19)	669 (73)
C (8)	715 (28)	2205 (16)	4578 (16)	542 (58)
C(9)	-2854 (70)	0*	0^{*}	1174 (197)
C(10)	-3552 (48)	629 (28)	425 (29)	1167 (139)
C(11)	-5242 (49)	586 (19)	413 (22)	931 (104)
* Constrained.				

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{InCl}_{3} .4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$

$\mathrm{In}-\mathrm{Cl}(1)$	$2.471(8)$	$\mathrm{In}-\mathrm{Cl}(2)$	$2.476(2)$
$\mathrm{In}-\mathrm{N}(1)$	$2.377(21)$	$\mathrm{In}-\mathrm{N}(2)$	$2.302(7)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.41(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.36(2)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.36(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.45(2)$
$\mathrm{C}(4)-\mathrm{N}(2)$	$1.31(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.35(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.42(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.47(2)$
$\mathrm{N}(2)-\mathrm{C}(8)$	$1.35(2)$	$\mathrm{N}(3)-\mathrm{C}(11)$	$1.30(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.40(3)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.52(4)$
$\mathrm{Cl}(1)-\mathrm{In}-\mathrm{Cl}(2)$	$92.0(1)$	$\mathrm{N}(1)-\mathrm{In}-\mathrm{Cl}(2)$	$88.0(1)$
$\mathrm{N}(2)-\mathrm{In}-\mathrm{Cl}(1)$	$92.5(2)$	$\mathrm{N}(1)-\operatorname{In}-\mathrm{N}(2)$	$87.5(2)$
$\mathrm{N}(2)-\mathrm{In}-\mathrm{Cl}(2)$	$88.6(4)$	$\mathrm{N}(2)-\ln -\mathrm{N}(2)$	$175.1(2)$
$\mathrm{N}(1)-\mathrm{In}-\mathrm{Cl}(1)$	180.0		

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

Table 4. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{TlCl}_{3} .4 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$

$\mathrm{Tl}-\mathrm{Cl}(1)$	$2.520(6)$	$\mathrm{Tl}-\mathrm{Cl}(2)$	$2.498(4)$
$\mathrm{Tl}-\mathrm{N}(1)$	$2.482(15)$	$\mathrm{Tl}-\mathrm{N}(2)$	$2.380(12)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.34(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.36(4)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.33(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.42(3)$
$\mathrm{C}(4)-\mathrm{N}(2)$	$1.24(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.34(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.36(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.41(3)$
$\mathrm{N}(2)-\mathrm{C}(8)$	$1.35(3)$	$\mathrm{N}(3)-\mathrm{C}(11)$	$1.28(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.38(5)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.53(6)$
$\mathrm{Cl}(1)-\mathrm{Tl}-\mathrm{Cl}(2)$	$92.9(1)$	$\mathrm{N}(1)-\mathrm{Tl}-\mathrm{Cl}(2)$	$87.1(1)$
$\mathrm{N}(2)-\mathrm{Tl}-\mathrm{Cl}(1)$	$92.8(3)$	$\mathrm{N}(1)-\mathrm{Tl}-\mathrm{N}(2)$	$87.2(3)$
$\mathrm{N}(2)-\mathrm{Tl}-\mathrm{Cl}(2)$	$87.7(4)$	$\mathrm{N}(2)-\mathrm{Tl}-\mathrm{N}\left(2^{i}\right)$	$174.4(3)$
$\mathrm{N}(1)-\mathrm{Tl}-\mathrm{Cl}(1)$	180.0		

$\mathrm{N}(1)-\mathrm{Tl}-\mathrm{Cl}(1)$
$180 \cdot 0$
Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

Fig. 1. Structure of $M \mathrm{Cl}_{3} \cdot 3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(M=\ln , \mathrm{Tl})$.

Fig. 2. Position of pyridine solvate molecules within the crystal.
trans pyridines [rings containing $\mathrm{N}(2)$ and $\mathrm{N}\left(2^{2}\right)$] is $90(3)^{\circ}$ and these planes are at $45(3)^{\circ}$ to the $M-\mathrm{Cl}$ and $M-\mathrm{N}$ directions in the intermediate plane. The mer geometry of the indium complex was not predicted by previous vibrational spectroscopic studies (Carty \& Tuck, 1975); this has been discussed by us recently (Small \& Worrall, 1982).

Bond distances and angles are listed in Tables 3 and 4; the In -N distance, $2 \cdot 33$ (2) \AA (av), is almost equal to that observed in the analogous bromide complex, suggesting that the acceptor strengths of the halides are similar with respect to pyridine. The $\mathrm{In}-\mathrm{Cl}$ distance, 2.474 (4) \AA (av), compares with 2.524 (5) \AA (av) observed in InCl_{6}^{3-} (Contreras, Einstein, Gilbert \& Tuck, 1977). The $\mathrm{Tl}-\mathrm{Cl}$ bond lengths, 2.505 (5) \AA (av), are similar to those in other six-coordinate Tl compounds [2.48-2.54 \AA (Lee, 1971)] as are the $\mathrm{Tl}-\mathrm{N}$ distances, 2.41 (1) \AA, compared with 2.44 (2) \AA in $\mathrm{TlBr}_{3} .2$ pyridine (Jeffs, Small \& Worrall, 1984) and $2 \cdot 36$ (2) \AA in TlCl_{3}.(1,10-phenanthroline) (Baxter \&

Gafner, 1972). The main angular distortions are due to repulsions by $\mathrm{Cl}(1)$ which lies trans to $\mathrm{N}(1)$. The large U values are to be expected for the unbound pyridine.

References

Baxter, J. \& Gafner, G. (1972). Inorg. Chem. 11, 176-178.
Carty, A. J. \& Tuck, D. G. (1975). Prog. Inorg. Chem. 19, 243-337.
Contreras, J. G., Einstein, F. W. B., Gilbert, M. M. \& Tuck, D. G. (1977). Acta Cryst. B33, 1648-1652.

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324. Glaser, J. (1979). Acta Chem. Scand. Ser. A, 33, 789-794.
Jeffs, S. E., Small, R. W. H. \& Worrall, I. J. (1984). Acta Cryst. C40, 65-67.
Lee, A. G. (1971). The Chemistry of Thallium. London: Elsevier.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Small, R. W. H. \& Worrall, I. J. (1982). Acta Cryst. B38, 932-934.

Acta Cryst. (1984). C40, 1331-1334

Structure of Semiconducting 3,4;3',4'-Bis(ethylenedithio)-2,2',5,5'-tetrathiafulvaleneHexafluoroarsenate (2:1), (BEDT-TTF) $\mathbf{2} \mathrm{AsF}_{6},\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~S}_{8}\right)_{2} \mathrm{AsF}_{6}$

By P. C. W. Leung, M. A. Beno, G. S. Blackman,* B. R. Coughlin,* C. A. Miderski,* W. Joss, G. W. Crabtree and J. M. Williams \dagger
Chemistry and Materials Science and Technology Divisions, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 28 December 1983; accepted 20 March 1984)

Abstract

M_{r}=958.287\), monoclinic, $A 2 / a, a=$ 14.890 (12), $b=6.666$ (7), $c=35.3789$ (12) $\AA, \beta=$ $111 \cdot 19(10)^{\circ}, V=3274 \AA^{3}, Z=4, D_{x}=1.94 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu($ Mo $K \alpha, \quad \lambda=0.71073 \AA)=2.07 \mathrm{~mm}^{-1}, \quad F(000)=$ 1916, $T=298 \mathrm{~K}, R(F)=0.055$ for 1323 observed reflections. The structure consists of two-dimensional sheets of BEDT-TTF $\left(\mathrm{C}_{10} \mathrm{~S}_{8} \mathrm{H}_{8}\right)$ molecules separated by AsF_{6}^{-}anions. Short $\mathrm{S}-\mathrm{S}$ contact distances are found normal to the molecular stacks but not along the stacking direction. The material undergoes a lowtemperature ($a, 2 b, c$) phase transition above 125 K .

[^1]0108-2701/84/081331-04\$01.50

Introduction. A new family of organic conductors has recently been synthesized, namely, the charge-transfer salts of 3,$4 ; 3^{\prime}, 4^{\prime}$-bis(ethylenedithio)-2,2',5,5'-tetrathiafulvalene (BEDT-TTF): e.g. (BEDT-TTF) $\mathbf{2}^{2} \mathrm{ClO}_{4}\left(\mathrm{C}_{2}-\right.$ $\left.\mathrm{H}_{3} \mathrm{Cl}_{3}\right)_{0.5}$ (Saito, Enoki, Toriumi \& Inokuchi, 1982). These include the first sulfur-based organic superconductor (BEDT-TTF) ${ }_{2} \mathrm{ReO}_{4}, \quad T_{c}=2 \mathrm{~K}$ at 0.4 G Pa pressure (Parkin, Engler, Schumaker, Lagier, Lee, Scott \& Greene, 1983). Crystals of these materials contain segregated stacks of donor and acceptor molecules with significant intermolecular $\mathrm{S} \cdots \mathrm{S}$ interactions between the organic molecules normal to the stacking direction (Kobayashi, Kato, Mori, Kobayashi, Sasaki, Saito \& Inokuchi, 1983; Kobayashi, Mori, Kato, Kobayashi, Sasaki, Saito \& Inokuchi, 1983; Parkin, Engler, Schumaker, Lagier, Lee, Scott \& Greene, 1983) and as

[^0]: * Lists of structure factors and anisotropic thermal parameters for both compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39409 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Participant in the summer 1983 Student Research Participation Program coordinated by the Argonne Division of Educational Programs.
 \dagger Author to whom correspondence is to be addressed.

